www.五月天,黑人大群XXXX,精灵梦叶罗丽第八季,98国产精品综合一区二区三区

撥號(hào)18861759551

你的位置:首頁(yè) > 技術(shù)文章 > 介紹反光目標(biāo)

技術(shù)文章

介紹反光目標(biāo)

技術(shù)文章

Introduction to Reflective Objectives

Microscope objectives are one of the most recognizable components of a microscope design. Microscope objectives magnify images so they can be viewed easily by the human eye via an eyepiece or by an imaging system (e.g. imaging lens and camera). Traditional objectives are refractive in design; in other words, they are comprised of a series of optical lenses. However, the need for high magnification focusing optics, chromatically corrected from the deep-ultraviolet to the far-infrared, has prompted industry to develop economical off-the-shelf microscope objectives for these wavelengths - reflective, or mirror-based, objectives are the answer. These objectives employ a reflective design of two or more mirrors to focus light or form an image. For more information on objectives in general, view Understanding Microscopes and Objectives.

 

The most common type of reflective objective is a two-mirror Schwarzschild objective (Figure 1). This system consists of a small diameter "primary" mirror, held in position by a spider mount and a large diameter "secondary" mirror with a center aperture. The primary and secondary mirrors are represented with gold coatings to better illustrate their location within the reflective objective housing. These mirror-based objectives are available in two configurations: infinity corrected for focusing applications and finite conjugate for imaging applications.

Figure 1: Anatomy of a Reflective Objective

 

TYPES OF REFLECTIVE OBJECTIVES

Infinity Corrected Reflective Objectives

Infinity corrected reflective objectives (Figure 2) are ideal for focusing applications. Collimated light (e.g. a laser source) enters the objective through the center aperture in the secondary mirror and comes to focus at its specified working distance. This configuration provides an economical means of focusing broadband or multiple laser sources to a single point. A common application is focusing an infrared (IR) or ultraviolet (UV) laser (such as an Nd:YAG laser) which incorporates a visible reference beam.

Figure 2: Infinity Corrected Reflective Objective Design

 

Finite-Conjugate Reflective Objectives

Finite conjugate reflective objectives (Figure 3) are ideal for imaging applications. They are a straightforward solution that does not require the use of any additional focusing optics. This finite conjugate mirror-based configuration provides excellent resolution, and can typically be used interchangeably with traditional refractive microscope objectives. Infinity corrected reflective objectives can be used in imaging applications with the addition of a tube lens and have the added flexibility of introducing beam manipulation optics into the beam path.

Figure 3: Finite-Conjugate Reflective Objective Design

 

THE BENEFITS OF REFLECTIVE VS. REFRACTIVE MICROSCOPE OBJECTIVE DESIGNS

The primary advantage of reflective objectives versus their refractive counterparts is their chromatic correction over broad spectral ranges. Refractive objectives that offer similar performance in limited ranges, for example the visible spectrum, are fairly popular. However, as the wavelength range begins to exceed the design range, transmission and image performance suffer. In addition, there are numerous reflective coating options available that allow unmatched performance in the deep-UV, IR, and at specific laser wavelengths.

 

Important Reflective Objective Specifications

When comparing reflective objectives, there are two parameters unique to these mirror-based systems that need to be considered: obscuration and transmitted wavefront. In reflective systems, there is a central portion of the primary mirror that does not transfer the rays to the secondary mirror but rather reflects them back out through the stray light baffle. To avoid this, many manufacturers place an absorptive coating over the central part of the primary mirror. There are two other locations were obscuration occurs, namely, the diameter of the primary mirror and the width of the spider legs. It is best to include all contribution of obscuration in the stated value, though some manufacturers only include the contribution of the central obscuration. For example, Edmund Optics® includes all contribution of obscuration in specifications for reflective objectives.

 

Transmitted wavefront error is perhaps the most important parameter for many applications requiring a reflective objective; transmitted wavefront error is the difference between the wavefront from when it enters and exits the system. Recent advances in mirror manufacturing enable production and testing of high accuracy surfaces, creating better corrected systems. Mirrors on the order of λ/20 peak-to-valley (P-V) are achievable and these allow the production of reflective objectives that have a transmitted wavefront ≤ λ/4 P-V. For example, Edmund Optics hard-mounts all fixed TECHSPEC® ReflX™ Reflective Objectives, guaranteeing λ/10 RMS transmitted wavefront on the standard line and λ/4 P-V transmitted wavefront on the high performance line. The fixed line of TECHSPEC® ReflX™ Reflective Objectives is actively aligned and tested on a Zygo GPI-XP Interferometer to ensure that each objective is within specification.

 

While traditional refractive objectives are ideal for a range of applications within a specific wavelength band, reflective objectives can be substituted to increase performance and image quality in broadband applications from the deep-UV to the far-IR. Reflective objectives are ideal for FTIR, laser focusing, and ellipsometry applications where diffraction-limited performance and chromatic correction are crucial.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線(xiàn)客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線(xiàn)咨詢(xún)
QQ客服
QQ:17041053
電話(huà)咨詢(xún)
0510-68836815
關(guān)注微信
jlzzjlzz全部女高潮| 久久久久成人精品| 无码人妻丰满熟妇啪啪网站牛牛| 妺妺坐在我腿上勃起弄了应用 | 国产乱老熟妇吃嫩草| 女人毛太多进不去| 久久免费看黄a级毛片| 我的世界珍妮视频完整版在线观看| 小13箩莉黄瓜自慰喷白浆| 国产vpswindows精品| 含着jing液去上课h男男| 麻豆一区二区三区精品视频 | 尤物视频在线观看| 国产免费久久精品99久久| free嫩白18sex性hd处| 亚洲av无码一区二区三区系列| 我的美丽岳李雪梅第6章| 欧美大肥婆bbbww| 亚洲国产精久久久久久久| 伊人久久综合精品无码AV专区| 一本一道久久a久久精品综合| 偷窥 性别 瘾 xxxxx| 巨大巨粗巨长 黑人长吊| 蜜桃成人无码区免费视频网站| 精品亚洲欧美无人区乱码| 天干天干天啪啪夜爽爽99| 无码精品a∨在线观看中文| chinese真实incest农村寡妇| 一个添下面两个吃奶把腿扒开| 我被继夫添我阳道舒服视频| 妓院里的中国姑娘| 国产又色又爽又黄又免费| 久久久久久久精品无码av少妇| 亚洲av永久无码一区二区三区 | 差差差很疼30分钟的视频| 短裙公车被强好爽h吃奶| 国产av被c呻吟双腿视频| 啊灬啊灬啊快日出水了| 国产精品久久777777| 女女同性女同色情在线电影| 欧美艳星nikki激情办公室|